Towards a rational design of solid drug nanoparticles with optimised pharmacological properties
نویسندگان
چکیده
Solid drug nanoparticles (SDNs) are a nanotechnology with favourable characteristics to enhance drug delivery and improve the treatment of several diseases, showing benefit for improved oral bioavailability and injectable long-acting medicines. The physicochemical properties and composition of nanoformulations can influence the absorption, distribution, and elimination of nanoparticles; consequently, the development of nanoparticles for drug delivery should consider the potential role of nanoparticle characteristics in the definition of pharmacokinetics. The aim of this study was to investigate the pharmacological behaviour of efavirenz SDNs and the identification of optimal nanoparticle properties and composition. Seventy-seven efavirenz SDNs were included in the analysis. Cellular accumulation was evaluated in HepG2 (hepatic) and Caco-2 (intestinal), CEM (lymphocyte), THP1 (monocyte), and A-THP1 (macrophage) cell lines. Apparent intestinal permeability (Papp) was measured using a monolayer of Caco-2 cells. The Papp values were used to evaluate the potential benefit on pharmacokinetics using a physiologically based pharmacokinetic model. The generated SDNs had an enhanced intestinal permeability and accumulation in different cell lines compared to the traditional formulation of efavirenz. Nanoparticle size and excipient choice influenced efavirenz apparent permeability and cellular accumulation, and this appeared to be cell line dependent. These findings represent a valuable platform for the design of SDNs, giving an empirical background for the selection of optimal nanoparticle characteristics and composition. Understanding how nanoparticle components and physicochemical properties influence pharmacological patterns will enable the rational design of SDNs with desirable pharmacokinetics.
منابع مشابه
Solid Lipid Nanoparticles of Atovaquone Based on 24 Full-factorial Design
Solid lipid nanoparticles of atovaquone (ATQ-SLN) were prepared by high shearhomogenization method using tripalmitin, trilaurin, and Compritol 888 ATO as the lipidmatrices and Phospholipon 90H, Tween 80, and poloxamer 188 as the surfactants. Optimizationof the formulations was conducted using 6 sets of 24 full-factorial design based on fourindependent variables that were the number of homogeniz...
متن کاملSolid Lipid Nanoparticles of Atovaquone Based on 24 Full-factorial Design
Solid lipid nanoparticles of atovaquone (ATQ-SLN) were prepared by high shearhomogenization method using tripalmitin, trilaurin, and Compritol 888 ATO as the lipidmatrices and Phospholipon 90H, Tween 80, and poloxamer 188 as the surfactants. Optimizationof the formulations was conducted using 6 sets of 24 full-factorial design based on fourindependent variables that were the number of homogeniz...
متن کاملSimvastatin Solid Lipid Nanoparticles for Oral Delivery: Formulation Development and In vivo Evaluation
Solid lipid nanoparticles have been increasingly utilised for improving oral bioavailability of drugs. Simvastatin is biopharmaceutical class 2 drug with poor oral bioavailability of 5%. In the present study, simvastatin solid lipid nanoparticles were successfully prepared by hot melt emulsification process and optimised with respect to surfactant and lipid concentration, and drug loading. The ...
متن کاملP107: Using Nano Particles as a Novel Application for Alzheimer’s Disease; an Effective Endeavor for Drug Delivery
As the most common cause of dementia among the elderly results in cognitive and ‎behavioral impairment, Alzheimer’s disease (AD) is characterized with aggregation of senile ‎plaques (Beta-amyloid protein), cortical atrophy and ventricular enlargement. Unfortunately, ‎conventional methods like acetyl cholinesterase inhibitor drugs, are not so effective owing to ‎restrictive...
متن کاملThe Effect of Process Variables on the Properties of Ketoprofen Loaded Solid Lipid Nanoparticles of Beeswax and Carnauba Wax
Solid Lipid Nanoparticles (SLNs) have emerged as an alternative colloidal carriers for sustained release of lipophilic drugs with poor absorption and water solubility. This manuscript describes the effect of process variables on the production of Solid Lipid Nanoparticles (SLNs) from beeswax and carnauba wax and ketoprofen release from these carriers. It was found that by increasing drug co...
متن کامل